neutron diffraction


Also found in: Wikipedia.

Neutron diffraction

The phenomenon associated with the interference processes which occur when neutrons are scattered by the atoms within solids, liquids, and gases. The use of neutron diffraction as an experimental technique is relatively new compared to electron and x-ray diffraction, since successful application requires high thermal-neutron fluxes, which can be obtained only from nuclear reactors. These diffraction investigations are possible because thermal neutrons have energies with equivalent wavelengths near 0.1 nanometer and are therefore ideally suited for interatomic interference studies.

In the scattering of neutrons by atoms, there are two important interactions. One is the short-range, nuclear interaction of the neutron with the atomic nucleus. This interaction produces isotropic scattering because the atomic nucleus is essentially a point scatterer relative to the wavelengths of thermal neutrons. Strong resonances associated with the scattering process prevent any regular variation of the nuclear scattering amplitudes with atomic number. The other important process for the scattering of neutrons by atoms is the interaction of the magnetic moment of the neutron with the spin and orbital magnetic moments of the atom. See Scattering experiments (atoms and molecules), Scattering experiments (nuclei)

Since the nuclear scattering amplitudes for neutrons do not vary uniformly with atomic number, there are certain types of chemical structures which can be investigated more readily by neutron diffraction than by x-ray diffraction. Moreover, since neutron scattering is a nuclear process, when the scattering amplitude of an element is not favorable for a particular investigation, it is frequently possible to substitute an enriched isotope which has scattering characteristics that are markedly different. The most significant application of neutron diffraction in chemical crystallography is the structure determination of composite crystals which contain both heavy and light atoms, and the most important compounds in this general classification are the hydrogen-containing substances.

The interaction of the magnetic moment of the neutron with the orbital and spin moments in magnetic atoms makes neutron scattering a unique tool for the study of a wide variety of magnetic phenomena, because information is obtained on the magnetic properties of the individual atoms in a material. This interaction depends on the size of the atomic magnetic moment and also on the relative orientation of the neutron spin and of the atomic magnetic moment with respect to the scattering vector and with respect to each other. Consequently, detailed information can be obtained on both the magnitude and orientation of magnetic moments in any substance which displays magnetic properties.

The investigation of antiferromagnetic and ferrimagnetic substances is one of the most important applications of the neutron diffraction technique, because detailed information on the magnetic configuration in these systems cannot be obtained by other methods.

One of the most important uses of inelastic neutron scattering is the study of thermal vibrations of atoms about their equilibrium positions, because lattice vibration quanta, or phonons, can be excited or annihilated in their interactions with low-energy neutrons. The measurements provide a direct determination of the dispersion relations for the normal vibrational modes of the crystal and do not require the large corrections necessary in similar x-ray investigations. These measured dispersion relations furnish the best experimental information available on interatomic forces that exist in crystals. See Electron diffraction, Magnon, Neutron spectrometry

McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc.

neutron diffraction

[′nü‚trän di‚frak·shən]
(physics)
The phenomenon associated with the interference processes which occur when neutrons are scattered by the atoms within solids, liquids, and gases.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
References in periodicals archive ?
[26] Cagliotti G., Paoletti A., Ricci F.P.: "Choice of collimators for a crystal spectrometer for neutron diffraction", Nuclear Instruments, Vol.
In this study, aluminum-to-steel joining was simulated and compared with the neutron diffraction results achieving reasonable agreement between experimental and simulated residual stress values.
Saboungi, "Combined X-ray and neutron diffraction from binary liquids and amorphous semiconductors," Journal of Non-Crystalline Solids, vol.
The overall phase evolution across the vast temperature range in the Ni-containing alloy was studied by in situ neutron diffraction (ND).
Mapping residual and internal stress in materials by neutron diffraction, Comptes Rendus Physique 8: 806-820.
Sitepu, "Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich [Ni.sub.50.7][Ti.sub.49.30] alloy," Powder Diffraction, vol.
Ricci, "Choice of collimators for a crystal spectrometer for neutron diffraction," Nuclear Instruments, vol.
In addition, the residual stress by thermal elastoplastic FE analysis is compared with the results by the neutron diffraction method for verifying the reliability of the FE analysis.
The existing measurement methods of crystallographic orientations included etch-pit technique [4], neutron diffraction [5], electron backscatter diffraction (EBSD) [6-8], X-ray diffraction [9, 10], and micro-Raman spectroscopy [11].
Other combined studies, provided by EBSD technique and light microscopy [8], AE with neutron diffraction [9], have shown that {10-12}<-101-1> twins nucleate at the beginning of plastic deformation.