(redirected from nonelectrolyte)
Also found in: Dictionary, Thesaurus, Medical.


electrolyte (ĭlĕkˈtrəlītˌ), electrical conductor in which current is carried by ions rather than by free electrons (as in a metal). Electrolytes include water solutions of acids, bases, or salts; certain pure liquids; and molten salts. Gases may act as electrolytes under conditions of high temperature or low pressure. All inorganic acids, bases, and salts are electrolytes. Electrolytic substances are classified as strong or weak according to how readily they dissociate into conducting ions. Potassium chloride and sodium hydroxide are strong electrolytes; they are almost completely dissociated when in solution or fused. Acetic acid is a weak electrolyte. An electrolyte is decomposed when a current passes through it (see electrolysis).
The Columbia Electronic Encyclopedia™ Copyright © 2022, Columbia University Press. Licensed from Columbia University Press. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.



a liquid or solid compound or system in which some noticeable concentration of ions that provide for the passage of electric current is present. In the narrow sense, electrolytes are substances whose solutions conduct electric current by means of ions, formed as a result of electrolytic dissociation.

A distinction is made between strong and weak electrolytes in solution. Strong electrolytes virtually completely dissociate into ions in dilute solutions. They include many inorganic salts and several inorganic acids and bases in aqueous solutions and in solvents possessing high dissociating capacity, such as alcohols and amides. The molecules of weak electrolytes in solution are only partially dissociated into ions, which are in dynamic equilibrium with the undissociated molecules. Weak electrolytes include most organic acids and many organic bases in aqueous and nonaqueous solvents. The division of electrolytes into strong and weak electrolytes is somewhat arbitrary, since it reflects not the properties of the electrolytes themselves but their state in solution, which depends on the concentration, on the nature of the solvent, on temperature, and on pressure.

On the basis of the number of ions into which one electrolyte molecule dissociates in solution, a distinction is made between binary electrolytes (written 1–1 electrolytes; for example, KCl), unibivalent electrolytes (written 1–2 electrolytes; for example, CaCl2), and so forth. Electrolytes of types 1–1, 2–2, and 3–3 are called symmetrical electrolytes, while electrolytes of types 1–2 and 1–3 are called nonsymmetrical electrolytes.

The properties of dilute solutions of weak electrolytes are described satisfactorily by the classical theory of electrolytic dissociation. The theory is inapplicable for insufficiently dilute solutions of weak electrolytes and for solutions of strong electrolytes, since these are complex systems consisting of ions, undissociated molecules or ion pairs, and larger aggregates. The properties of such solutions are determined by the nature of the ion-ion and ion-solvent interactions and by changes in the properties and structure of the solvent caused by the dissolved particles. The modern statistical theories of strong electrolytes adequately describe the properties of only very dilute solutions (<0.1 mole/liter).

Electrolytes are extremely important in science and technology. All liquid systems in living organisms contain electrolytes. Polyelectrolytes constitute an important class of electrolytes (seePOLYELECTROLYTE). Electrolytes are a medium for carrying out many chemical syntheses and electrochemical production processes. Nonaqueous electrolyte solutions are playing an ever increasing role in these applications. The study of the properties of electrolyte solutions is important in the design of new chemical sources of electric current and the improvement of technological processes for the separation of compounds by extraction from solution and ion exchange.


See references under .


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.


(physical chemistry)
A chemical compound which when molten or dissolved in certain solvents, usually water, will conduct an electric current.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.


1. a solution or molten substance that conducts electricity
a. a chemical compound that dissociates in solution into ions
b. any of the ions themselves
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005


A liquid, gelatinous or solid material that contains ions. In a battery, the electrolyte is the material that allows electricity to flow from one plate to another (between positive and negative electrodes). See battery, lithium polymer, solid state battery and batteries.
Copyright © 1981-2019 by The Computer Language Company Inc. All Rights reserved. THIS DEFINITION IS FOR PERSONAL USE ONLY. All other reproduction is strictly prohibited without permission from the publisher.
References in periodicals archive ?
When dehydrated, the terrestrial slug Lehmannia valentiana displays rapid water uptake and accumulates nonelectrolytes (mannitol and inulin) through paracellular pathways in the foot epithelium (Uglem et al., 1985).
polymorpha specimens lost 80%-85% of their blood Na and Cl within 12 h, with concomitant accumulation of the nonelectrolytes from the bathing medium through the paracellular pathway (Dietz et al., 1995; Dietz et al., 1997).
Contributors from Israel, Italy, Russia, Greece, Czech Republic, and China describe experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, and relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.
Hildebrand, Solubility of Nonelectrolytes, Reinhold, New York (1936).
The molar conductance values of heterobimetallic complexes measured in DMF (18-33 [ohm.sup.-1] [mol.sup.-1] [cm.sup.2]) showed them to be nonelectrolytes. The analytical and physical data of the synthesized complexes have been summarized in Table 6.
The molar conductance values of heterobimetallic complexes in DMF solution fall in the range of 18-33 [ohm.sup.-1] [mol.sup.-1] [cm.sup.2] suggesting that they are nonelectrolytes while higher conductance
The molar conductance values of the complexes fall in the range from 10.32 to 20.14 [[OMEGA].sup.-1] [cm.sup.2] [mol.sup.-1] indicating that these compounds are nonelectrolytes.
The complexes are nonelectrolytes in DMSO, as evident from the molar conductivity values which range from ~9 to 13 [Ohm.sup.-1] [cm.sup.2] [mol.sup.-1] [30-32].