Also found in: Dictionary, Thesaurus, Medical, Wikipedia.


term applying to both the protonproton,
elementary particle having a single positive electrical charge and constituting the nucleus of the ordinary hydrogen atom. The positive charge of the nucleus of any atom is due to its protons.
..... Click the link for more information.
 and the neutronneutron,
uncharged elementary particle of slightly greater mass than the proton. It was discovered by James Chadwick in 1932. The stable isotopes of all elements except hydrogen and helium contain a number of neutrons equal to or greater than the number of protons.
..... Click the link for more information.
, the two constituents of atomic nuclei. The nucleon may be considered a single particle, of which the proton and the neutron are two different states. See atomatom
[Gr.,=uncuttable (indivisible)], basic unit of matter; more properly, the smallest unit of a chemical element having the properties of that element. Structure of the Atom
..... Click the link for more information.
; elementary particleselementary particles,
the most basic physical constituents of the universe. Basic Constituents of Matter

Molecules are built up from the atom, which is the basic unit of any chemical element. The atom in turn is made from the proton, neutron, and electron.
..... Click the link for more information.


The collective name for a proton or a neutron. These subatomic particles are the principal constituents of atomic nuclei and therefore of most matter in the universe. The proton and neutron share many characteristics. They have the same intrinsic spin, nearly the same mass, and similar interactions with other subatomic particles, and they can transform into one another by means of the weak interactions. Hence it is often useful to view them as two different states or configurations of the same particle, the nucleon. Nucleons are small compared to atomic dimensions and relatively heavy. Their characteristic size is of order 1/10,000 the size of a typical atom, and their mass is of order 2000 times the mass of the electron.

The proton and neutron differ chiefly in their electromagnetic properties. The proton has electric charge +1, the opposite of the electron, while the neutron is electrically neutral. They have significantly different intrinsic magnetic moments. Because the neutron is slightly heavier than the proton, roughly 1 part in 1000, the neutron is unstable, decaying into a proton, an electron, and an antineutrino with a characteristic lifetime of approximately 900 s. Although some unified field theories predict that the proton is unstable, no experiment has detected proton decay.

The complex forces between nucleons and the discovery during the 1950s of many similar subatomic particles led physicists to suggest that nucleons might not be fundamental particles. During the late 1960s and 1970s, inelastic electron and neutrino scattering experiments indicated that nucleons are composed of pointlike particles with spin ½ and electric charges that are fractions of the charge on the electron. Particles with similar properties, named quarks, had been hypothesized in the early 1960s to explain other regularities among the properties of hadrons. In the early 1970s, it became clear that nucleons and other hadrons are indeed bound states of quarks. See Hadron, Nuclear structure

Quarks are believed to be fundamental particles without internal structure. The proton consists of two up-type quarks and one down-type quark (uud), while the neutron consists of ddu. Quarks are bound into nucleons by strong forces carried by gluons. The nucleon contains ambient gluon fields in somewhat the same way that the atom contains ambient electromagnetic fields. Because quarks and gluons are much less massive than the nucleon itself, their motion inside the nucleon is relativistic, making quark-antiquark pair creation a significant factor. Thus the nucleon contains fluctuating quark-antiquark pairs in addition to quarks and gluons. The theory of quark-gluon interactions is known as quantum chromodynamics (QCD), in analogy to the quantum theory of electrodynamics (QED). See Elementary particle, Gluons, Neutron, Proton, Quantum chromodynamics, Quantum electrodynamics, Quarks


(new -klee-on) One of the constituents of the atomic nucleus, i.e. a proton or a neutron.


A collective name for a proton or a neutron; these particles are the main constituents of atomic nuclei, have approximately the same mass, have a spin of ½, and can transform into each other through the process of beta decay.


a proton or neutron, esp one present in an atomic nucleus
References in periodicals archive ?
We have thus developed a simulation of the nucleon and its parent nucleus orbiting their common center of mass.
It is well known that for each kind of nucleon the shell correction is in opposite phase with respect to the pairing correction (this means for that when [delta] [E.
Each of these constituents of a nucleon carries some share of the nucleon's energy, although the distribution of that energy among the constituents constantly shifts, Ji explains.
The main concern is the accuracy and reliability of calculations of the radiative corrections, especially the ones which are dominated by nucleon structure-dependent contributions.
For decades, physicists have investigated nucleon structures by firing electrons at them (SN: 8/27/94, p.
DNA was extracted using Nucleon resin as described by the manufacturers (Amersham Pharmacia Biotech).
Using these form factors, the u, d, and s quark contributions to the charge and current of the nucleon can be determined.
The IBISWorld Professional Equipment Manufacturing in China industry report (China Industry Code - 4061) comprises establishments primarily engaged in manufacturing special, professional-use instruments and apparatus, including environmental control instruments, automotive instruments and other meters; navigational, meteorological and marine apparatus; meter apparatus for farming, forestry and fishing; geologic prospecting and earthquake-use instruments; teaching apparatus; nucleon and nuclear radiation measuring instruments; instruments for measuring and testing electricity and electrical signals; and other special use apparatus.
of Jyvaskyla, Finland), the papers address a list of topics that includes nuclear structure at the extremes; collective phenomena and phase transitions; nuclear masses and ground state properties; synthesis and structure of heaviest elements; mean field theories, shell model, cluster models, and molecular dynamics; nucleosynthesis in the cosmos and nuclear physics aspects; weak-interaction processes; nucleon scattering as a probe for nuclear structure; nuclear reaction off stability and indirect methods; reaction dynamics at low and intermediate energies; radioactive and exotic beams; and facilities and instrumentation for the future.
Nucleon compositeness is considered by appropriate parameterization of the nucleon weak transition current and electromagnetic form factors.
Under those extreme conditions, the strong binding that holds a nucleon together should relax enough for a moment for quarks and gluons to roam freely, theorists predict.