Piezometer

(redirected from piezometric)
Also found in: Dictionary, Thesaurus.
Related to piezometric: piezometric surface

piezometer

[‚pē·ə′zäm·əd·ər]
(engineering)
An instrument for measuring fluid pressure, such as a gage attached to a pipe containing a gas or liquid.
An instrument for measuring the compressibility of materials, such as a vessel that determines the change in volume of a substance in response to hydrostatic pressure.

Piezometer

 

a device used to measure the change in volume of substances that occurs as a result of hydrostatic pressure. Piezometric measurements are used to obtain data on the compressibility, or volume elasticity, of substances and to investigate phase diagrams, phase transitions, and other physical and chemical processes.

The design of piezometers is determined by the range of pressures and temperatures to be applied, by the state of aggregation of the substance to be investigated (gaseous, liquid, or solid), and by the compressibility of the substance. There are two main types of piezometers. In those of the first type, the mass M of the substance being investigated is constant, but its volume V changes with pressure ρ and temperature T. Such piezometers are thick-walled vessels in which pressure is applied to solids, liquids, or gases in order to determine their compressibility. During the experiment, the relationship between the change in V and that in ρ is measured; the temperature of the substance is usually kept constant. In piezometers of the second type, M is a variable quantity, and the volume of the vessel containing the substance to be studied is constant. Here, an allowance must be made for any deformation in the piezometers caused by the application of pressure. Piezometers of the second type are not used in the study of liquids with high viscosity or of solids. In working with such piezometers, p is measured and each change in M is determined either by weighing or, after removal of the load, by such methods as measuring the volume of the discharged gas under standard conditions.

Plunger- or piston-type piezometers are used for determining the compressibility of liquids and solids at pressures in the high range of 108-1010 newtons per square meter (N/m2). During the process of compression, the volume V is determined by noting, either optically or with the aid of electric sensors mounted inside the vessel, the piston’s displacement; a value for ρ is arrived at by measuring the force applied to the piston or by resorting to electric sensors. In a number of cases, the substance under investigation itself serves as a pressure-transmitting medium. For the pressure range ρ ≳ 109-1010 N/m2 (10–100 kilobars), compressibility is determined by other methods, such as X-ray structural analysis. The change in the linear dimensions of bodies acted upon by hydrostatic pressure is measured by linear piezometers.

The term “piezometer” was introduced during the 1820’s in connection with the work done by the British physicist J. Perkins and by H. C. Oersted on the compressibility of liquids. At that time, the piezometer was a vessel that contained the liquid to be investigated. The open end of this vessel was immersed in mercury, which in turn was located at the bottom of a high-pressure vessel. If pressure was applied above the mercury by, for example, water or oil, the mercury would be displaced into the vessel containing the liquid under investigation. The height of the mercury’s rise, which depended both on the applied pressure and the compressibility of the liquid being studied, was recorded visually (in glass piezometers) and by using such means as measuring the resistance change in a platinum wire. Further development of piezometers during the 19th century is associated with the Russian scientists G. F. Parrot, E. Kh. Lents (H. F. E. Lenz), and D. I. Mendeleev and the French physicists E. Amagat and H. V. Regnault; in the 20th century major contributions were made by G. Tammann and the American physicists T. Richards and P. Bridgman.

In the technology of physical experiments at high pressures, the term “piezometer” sometimes denotes thick-walled, high-pressure vessels with a cylindrical channel that are not designed for measurements of compressibility. In English reference sources, the term is also applied to devices used to measure pressures found in flow systems, in the bore of artillery pieces, and at ocean depths.

REFERENCES

Bridgman, P. W. Fizika vysokikh davlenii. Moscow-Leningrad, 1935. (Translated from English.)
Bridgman, P. W. Noveishie raboty v oblasti vysokikh davlenii. Moscow, 1948. (Translated from English.)
Tsiklis, D. S. Tekhnika fiziko-khimicheskikh issledovanii pri vysokikh i sverkhvysokikh davleniiakh, 3rd ed. Moscow, 1965.
Kornfel’d, M. “Metody i rezul’taty issledovaniia ob”emnoi uprugosti veshchestva.” Uspekhifizicheskikh nauk, 1954, vol. 54, issue 2.

L. D. LIVSHITS

piezometer

A device for measuring liquid pressure; used to measure the pore water pressure in soil.
References in periodicals archive ?
For reliable these records and get more data and therefore more representative of tablecloths fluctuations, Aeroports de Paris plans to gradually automate all or part of the current and future park piezometric various airports Ile or even general aviation airfields .
The main reason of this missing variable may be linked to nonavailable information at date 1 and imprecise extrapolation of local piezometric measurements.
The minimum, mean, maximum and standard deviation of piezometric head data in the second group of piezometers are presented in Table 8.
The movements monitored using surface markers and inclinometers helped to identify the potential slip surface and showed that the movement of the sliding area was directly related to piezometric observations and rainfall (Jayaratne, et.
These springs are the lowest natural piezometric outlet for the San Antonio section of the Edwards Aquifer (Hanson & Small 1995).
v] is best determined in situ with either a piezometric cone penetrometer or a self boring pressuremeter (Bowles 1988).
Lot No 1 - maintenance of piezometric network in Charente = 34,500 (including VAT)
Limited comparisons of chloride and water-balance methods were inconsistent, and where data were sufficient, there was consistency between chloride leaching and piezometric methods.
Northward regional groundwater flow has been replaced with a radial flow towards the centre of the piezometric depression located 20 km to the south from the coast.
The pressure drop across the nozzles was measured by two piezometric rings located 38 mm (1.
The air-side pressure drop is measured with a differential pressure transducer connected to equalizing piezometric rings.