Also found in: Dictionary, Thesaurus, Medical, Legal, Financial, Acronyms, Wikipedia.


(rā`dŏn), gaseous radioactive chemical element; symbol Rn; at. no. 86; mass no. of most stable isotope 222; m.p. about −71°C;; b.p. −61.8°C;; density 9.73 grams per liter at STP; valence usually 0. Radon is colorless and the most dense gas known. Chemically unreactive, it is classed as an inert gasinert gas
or noble gas,
any of the elements in Group 18 of the periodic table. In order of increasing atomic number they are: helium, neon, argon, krypton, xenon, and radon. They are colorless, odorless, tasteless gases and were once believed to be entirely inert, i.e.
..... Click the link for more information.
 in Group 18 of the periodic tableperiodic table,
chart of the elements arranged according to the periodic law discovered by Dmitri I. Mendeleev and revised by Henry G. J. Moseley. In the periodic table the elements are arranged in columns and rows according to increasing atomic number (see the table entitled
..... Click the link for more information.
. Synthesis of radon fluoride has been reported.

Radon is highly radioactive and has a short half-life. The chief use of radon is in the treatment of cancer by radiotherapy. It has also found some use (mixed with beryllium) as a neutron source. All naturally occurring radon decays by the emission of alpha particles. The element is found in some spring waters, in streams, and to a very limited extent (about 1 part in 1021) in air. Radon is produced by the disintegration of its precursors in minerals, from which it diffuses in small amounts. In homes and other buildings in some areas of the United States, radon produced by the radioactive decay of uranium-238 present in soil and rock can reach levels regarded as dangerous, but the seriousness of the problem is unclear.

Twenty isotopes of radon are known, but only three occur naturally. Radon-222 (half-life 3.82 days) is produced by the decay of radium-226. Radon-220 (half-life 55 sec), also called thoron, is produced in the decay series of thoriumthorium
[from Thor], radioactive chemical element; symbol Th; at. no. 90; mass number of most stable isotope 232; m.p. about 1,750°C;; b.p. about 4,790°C;; sp. gr. 11.7 at 20°C;; valence +4.

Thorium is a soft, ductile, lustrous, silver-white, radioactive metal.
..... Click the link for more information.
-232. Radon-219 (half-life 4 sec), also called actinon, is produced in the decay series of uraniumuranium
, radioactive metallic chemical element; symbol U; at. no. 92; mass number of most stable isotope 238; m.p. 1,132°C;; b.p. 3,818°C;; sp. gr. 19.1 at 25°C;; valence +3, +4, +5, or +6.
..... Click the link for more information.
-235 (actinouranium). Ernest Rutherford discovered thoron in 1899. F. O. Dorn discovered radon-222 in 1900 and called it radium emanation. In about 1902, F. O. Giesel discovered actinon. In 1908 William Ramsay and R. W. Whytlaw-Gray isolated the element, which they called niton, and studied its physical properties. The name radon was adopted in the 1920s to refer to all the isotopes of the element, although the name emanation and symbol Em have been used.


A naturally occurring gas, colorless and odorless, that has been shown to cause adverse health effects. Radon gas often enters a structure by seeping through cellar walls and floors.



(Rn), a radioactive chemical element in group VIII of Mendeleev’s periodic system. Atomic number, 86. One of the inert gases. Three α-radioactive radon isotopes occur in nature as members of the natural radioactive decay series: 2l9Rn (member of actinouranium series, half-life T½ = 3.92 sec), 220Rn (thorium series, T½ = 54.5 sec), and 222Rn (uranium-radium series, T½ = 3.823 days). The isotope 219Rn is also known as actinon (symbol An), and 220Rn is known as thoron (Tn); 222Rn is called true radon and is often designated simply by the symbol Rn.

More than 20 radon isotopes, with mass numbers 201–222, have been obtained artificially through nuclear reactions. In order to synthesize the neutron-deficient radon isotopes with mass numbers 206–212, the Joint Institute for Nuclear Research (Dubna, USSR) has developed a special gas-chromatog-raphy unit, which can produce these isotopes in a radiochemi-cally pure form within a half-hour period.

The discovery of radon was the result of early research on radioactivity. In 1899 the American physicist R. B. Owens found that the decay of Th yields a certain radioactive substance, which can be extracted from solutions containing Th by means of a stream of air. E. Rutherford named this substance emanation (Latin emano, “I flow out”). In 1899, Rutherford, then working in Canada, proved that the thorium emanation discovered by Owens is a radioactive gas. That same year, F. Dorn in Germany and A.-L. Debierne in France announced that emanation (radium emanation → radon) is also formed during radium decay. In 1903 actinium emanation, or actinon (natural radon isotopes are still often called emanations), was also discovered. Thus with radon, scientists encountered —practically for the first time—the existence of several types of atoms in a single element, atoms that were later to be called isotopes. Rutherford, W. Ramsay, and F. Soddy showed that radium emanation is a new chemical element, one belonging to the inert-gas category. The name niton (Latin nitens, “shining”) was proposed because of the element’s ability to luminesce in the condensed state.

Radon is one of the rarest elements. The quantity of radon in the earth’s crust to a depth of 1.6 km amounts to approximately 115 tons. Formed in radioactive ores and minerals, radon gradually makes its way to the surface of the earth and enters the hydrosphere and atmosphere. The average radon concentration in the atmosphere is about 6 × 10–17 percent (by weight); in sea-water, the concentration can reach 0.001 picocurie per liter.

Under ordinary conditions, radon is a colorless, odorless, and tasteless gas with a boiling point of -61.8°C, a melting point of — 71°C, and a density of approximately 9.9 grams per liter at 0°C. The solubility is approximately 0.5 volume in unit volume of H2O at 0°C, and with organic solvents the solubility is considerably higher. Since the outer electron shell of the Rn atom contains eight electrons (configuration 6s2 6p6), the element is highly inactive chemically. Like xenon, radon forms a fluoride (possible composition RnF2), which at 500°C is reduced by hydrogen to elementary radon. As determined by B. A. Nikitin, radon can form clathrates with such compounds as water, phenol, and toluene.

Radon (isotope 222Rn) is obtained by passing a stream of gas (nitrogen, argon) through an aqueous solution of a radium salt. After passage through the solution, the gas will contain approximately 10–5 percent radon. Radon’s good sorption on porous solids (activated carbon) facilitates extraction, and special chemical methods for extraction are also available. The quantities of pure radon obtained do not exceed 1 mm3.

Radon is highly toxic because of its radioactive properties. Upon its decay, nonvolatile radioactive products (isotopes of Po, Bi, and Pb) are formed, which an organism can eliminate only with considerable difficulty. It is therefore necessary to use hermetic boxes and follow safety procedures when working with radon.

Radon is used primarily in medicine. Water containing radon is used in the treatment of diseases of the nervous and cardiovascular systems, respiratory and digestive organs, bones, joints, and muscles and in the treatment of gynecological and metabolic disorders.

The determination of radon concentration in the layer of air at the earth’s surface provides the basis for emanation methods used in geological prospecting. These methods permit an estimation of the U and Th content in soils and in rocks lying near the earth’s surface. Radon is also used in scientific research. The content of U and Th in, for example, rock samples, can be determined from the radioactivity of the radon in equilibrium with these elements. Studies carried out through the emanation method on the structural changes in solids are based on a measurement of the rate of radon formation upon heating solid samples containing radioisotopes that precede radon in the radioactive series 232Th and 235U.


Bagnall, K. Khimiia redkikh radioaktivnykh elementov. Polonii-aktinii. Moscow, 1960. (Translated from English.)
Berdonosov, S. S. Inertnye gazy vchera i segodnia. Moscow, 1966.
Pertsov, L. A. loniziruiushchie izlucheniia biosfery. Moscow, 1973.
Gusarov, I. I. Radonoterapiia. Moscow, 1974.



A chemical element, symbol Rn, atomic number 86; all isotopes are radioactive, the longest half-life being 3.82 days for mass number 222; it is the heaviest element of the noble-gas group, produced as a gaseous emanation from the radioactive decay of radium.
(nuclear physics)
The conventional name for radon-222. Symbolized Rn.


A gaseous emanation produced by the radioactive decay of radium, given off by some soils and rocks; it may collect and constitute a health hazard in buildings with poor ventilation.


a colourless radioactive element of the rare gas group, the most stable isotope of which, radon-222, is a decay product of radium. It is used as an alpha particle source in radiotherapy. Symbol: Rn; atomic no.: 86; half-life of 222Rn: 3.82 days; valency: 0; density: 9.73 kg/m3; melting pt.: --71?C; boiling pt.: --61.7?C
References in periodicals archive ?
The author declares his company, Appalachian Fracture Systems (ASF), has served as a consultant to the Pennsylvania Department of Environmental Protection, the government agency that generated the radon data for the study by Casey et al.
Daniel Cluff, a physicist and mine engineer, said the ventilation systems in modern mines ensure radon gas does not constitute a health and safety issue.
State of radon laws and regulations: Policy strategies for taking action to reduce radon in homes.
Remember, Swat Environmental is giving out FREE Radon Test Kits to homeowners, visit SWAT-Radon.
The radon particles adhere to the lining of the lung where it continues to decay.
Nevada locations offering radon test kits Radon Test Kits are available: University of Nevada Cooperative Extension (UNCE) http://www.
The measurement by radon digital monitor is among other methods for determining radon quantity that is done during a short time.
Residential histories of study subjects were geo-coded to 6-digit postal codes and are the basis of the estimation of ecological-level radon exposure.
The UK Government Department for Environment, Food & Rural Affairs (DEFRA) says there are five ways to reduce radon depending on the type of property and the levels present.
A smoker, who is together with a non-smoker in premises with the same amount of radon, risks to get a cancer even more than a nonsmoker because radon progeny settle on tiny particles of tobacco smoke (i.
Many geologists and geophysicists find the evidence for a radon connection lacking.
Stephanie Long of the RPII revealed there are still many homes in the country that need to be checked for high radon concentrations.