vaccine

(redirected from vaccine virus)
Also found in: Dictionary, Thesaurus, Medical.

vaccine:

see vaccinationvaccination,
means of producing immunity against pathogens, such as viruses and bacteria, by the introduction of live, killed, or altered antigens that stimulate the body to produce antibodies against more dangerous forms.
..... Click the link for more information.
.

Vaccine

 

a preparation obtained from microorganisms (bacteria, rickettsias, viruses) or products of their activity and used for active immunization of human beings and animals for prophylactic and therapeutic purposes. Vaccine was first used in 1796 by the English physician E. Jenner, who inoculated persons with cowpox, or vaccinia (hence the name “vaccine”) to protect them against smallpox.

Live, killed, and chemical vaccines and toxoids are distinguished.

Live vaccines are made from specially attenuated cultures of microorganisms deprived of their capacity to cause disease but remaining capable of reproducing in the body and causing immunity. The first to create live vaccines against anthrax (1881) and rabies (1885) was the French microbiologist L. Pasteur. The live tuberculosis vaccine (BCG) proposed in 1926 by the French scientists A. Calmette and C. Guérin won universal recognition; it greatly reduced the tuberculosis rate. Many live vaccines were created by Soviet scientists: for example, typhus vaccine (P. F. Zdrodovskii, 1957-59), influenza vaccine (A. A. Smorodintsev, V. D. Solov’ev, and V. M. Zhdanov, 1960), brucellosis vaccine (P. A. Vershilova, 1947-51), and smallpox vaccine (M. A. Morozov, 1941-60). Vaccines are the only effective inoculative preparations for certain diseases (rabies, smallpox, plague, tularemia). Live vaccines generally produce long-lasting immunity.

Killed vaccines are made from microorganisms killed by physical methods (heating) or chemical methods (phenol, formaldehyde, acetone). Killed vaccines are used to prevent only those diseases for which live vaccines are not available (typhoid, paratyphoid B, whooping cough, cholera, tick-borne encephalitis). They provide less protection than live vaccines. Hence immunity develops only after a course of immunization (vaccination) consisting of several inoculations.

Chemical vaccines are substances isolated from bacterial cells by various chemical methods and containing the main elements that cause immunity. Chemical vaccines against intestinal infections were first employed in 1941 as part of the NIISI polyvalent vaccine proposed by the Soviet scientists N. I. Aleksandrov and N. E. Gefen. Chemical vaccines are used to provide protection against paratyphoid B, typhoid, and rickettsial diseases.

The development of immunity following the injection of toxoids results from the appearance in the blood of antibodies that neutralize the effect of a particular toxin. Toxoids were obtained for the first time during the years 1923-26 by the French scientist G. Ramon. Toxoids are used to prevent diphtheria, tetanus, botulism, gas gangrene, and staphylococcal infections.

Vaccines can be made from the causative agent of a single infection, so-called monovalent vaccines, or from a combination of two or more causative agents, polyvalent vaccines. The latter produce immunity to several infectious diseases.

There are various methods of administering vaccines. In the case of live vaccines, they are related to a certain extent to the routes by which the causative agents enter the body. Thus, poliomyelitis vaccine is administered orally; influenza vaccine intranasally; smallpox, anthrax, and tularemia vaccines epidermally; brucellosis vaccine intradermally; typhus vaccine subcutaneously. Killed vaccines and toxoids are injected subcutaneously or intramuscularly.

Live vaccine is used to treat rabies (vaccine therapy), the only method of protecting man from this fatal disease. Autovaccines are used to treat several chronic inflammatory diseases caused by staphylococci and streptococci.

In the USSR, vaccines are produced by scientific production institutions. The quality of the preparations is controlled by the L. A. Tarasevich State Control Institute for Biomedical Preparations in Moscow.

A. KH. KANCHURIN

Vaccines in veterinary medicine. The principles used in preparing and classifying vaccines for the treatment of animal diseases are the same as those for human diseases. The most widely used live vaccines in veterinary practice include anthrax vaccines—STI and GNKI; swine erysipelas vaccine —from the Konev strain and VR2; brucellosis vaccine— from strain 19; and vaccines against cholera, smallpox, and Newcastle disease. Killed vaccines are used to prevent and treat more than 20 infectious diseases of animals.

REFERENCES

Ramon, G. Sorok let issledovatel’skoi raboty. Moscow, 1962. (Translated from French.)
Vygodchikov, G. V. “Nauchnye osnovy vaktsinno-syvorotochnogo dela.” In Mnogotomnoe rukovodstvo po mikrobiologii, klinike i epidemiologii infektsionnykh boleznei, vol. 3. Moscow, 1964. Pages 485-506.
Kravchenko, A. T., R. A. Saltykov, and F. F. Rezepov. Prakticheskoe rukovodstvo po primeneniiu biologic he skikh preparatov. Moscow, 1968.

A. KH. KANCHURIN
and S. G. KOLESOV

vaccine

[vak′sēn]
(immunology)
A suspension of killed or attenuated bacteria or viruses or fractions thereof, injected to produce active immunity.

vaccine

Med
1. a suspension of dead, attenuated, or otherwise modified microorganisms (viruses, bacteria, or rickettsiae) for inoculation to produce immunity to a disease by stimulating the production of antibodies
2. (originally) a preparation of the virus of cowpox taken from infected cows and inoculated in humans to produce immunity to smallpox
3. of or relating to vaccination or vaccinia
4. Computing a piece of software designed to detect and remove computer viruses from a system
References in periodicals archive ?
For the 2017-18 season inactivated vaccines, all influenza A(H1N1) and A(H3N2) and both influenza B components will be egg-derived, with the exception of ccIIV4, for which the influenza A(H3N2) virus component will, for the first time, be a cell-derived vaccine virus component (9).
1) The vaccine virus can, theoretically, spread from vaccinees who develop a rash to other people.
In the 1960s, such an experiment was conducted in Mogilev, in USSR; vaccine virus, particularly type 2 continued to circulate for at least one year (Chumakov K.
FDA (g) All 10 DEN Preclinical mutated with 3' genes (nonhuman point mutations (currently primates) only DEN2) Live, attenuated InViragen/ 8 DEN2, Preclinical DENV-2 vector, Shanta 2 chimeric (nonhuman DEN/DEN chimeric primates), scheduled for human studies Live, attenuated Acambis, 8 YF genes, Phase 1-2 YF17D vector, Sanofi Pasteur 2 chimeric tetravalent YF (h)/DEN DEN genes chimeric Subunit recombinant Hawaii Biotech 2 (80%E (i) Preclinical antigen, adjuvanted and NS1 (j)) (nonhuman primates), scheduled for human studies (a) DEN = candidate dengue vaccine virus.
Your body starts making antibodies to the vaccine virus about a week to 10 days after the injection, and they help protect you against any similar viruses.
Preferably said vaccine encompasses at least one mutation in an EIAV which produces a non-functional gene in the vaccine virus that is always expressed in disease-producing wild-type EIA viruses.
for his research into using the measles vaccine virus to target and destroy skin cancer cells; Vivek Venkatachalam, 18, of Berkeley Heights, N.
It cannot be overemphasized that the vaccine virus strains are killed virus and thus cannot cause disease.
Dick then vaccinated his four-year-old daughter to test whether the vaccine virus could spread in a normal family situation.
It's believed that, in rare instances, the rubella vaccine virus may be found in breast milk and enter the infant.
Healthy vaccinated persons have a minimal risk for transmitting vaccine virus to their contacts; this may be higher in vaccinees in whom a varicella-like rash develops following vaccination.

Full browser ?