Also found in: Dictionary, Thesaurus, Medical, Wikipedia.


An instrument designed to measure the viscosity of a fluid.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.



an instrument for the determination of viscosity. The most common types of viscometer are capillary, rotary, falling-sphere, and ultrasonic.

The determination of viscosity with a capillary viscometer is based on Poiseuille’s law and consists in the measurement of the flow time of a known quantity (volume) of liquid or gas through narrow tubes of circular cross section (capillaries) with a given pressure drop. Capillary viscometers are used to measure viscosity from 10-5 newton · sec/m2 (N·sec/m2) for gases to 104 N·sec/m2 for solid lubricants. The relative error of master capillary viscometers is ± 0.1-0.3 percent; of working instruments ± 0.5-2.5 percent. The construction of various types of glass viscometer is shown in Figure 1. In capillary viscometers of the types indicated, the flow of liquid occurs under the influence of gravity—at the starting moment the level of fluid in one arm is higher than in the other. The discharge time of the measuring reservoir is defined as the interval between the moments when the liquid level passes the marks at the upper and lower ends of the reservoir. In automatic (continuous-action) capillary viscometers the fluid enters the capillary from a constant-output pump. The pressure drop in the capillary, measured with a manometer, is proportional to the unknown viscosity.

Figure 1. Glass capillary viscometers (GOST [All-Union State Standard] 10028-67): (1) measuring reservoirs, (2) capillaries, (3) receiving vessels, (4) supply reservoir (in VNZh viscometers for opaque liquids), (5) thermostatic casing; M1 and M2 (in the VNZh, also M3) are markings for measurement of the time of discharge of fluid from the measuring reservoirs or the time for filling the reservoirs (in the VNZh).

In rotary viscometers, the viscous medium being investigated is in the space between two coaxial bodies (cylinders, cones, spheres, or a combination of them); one of these bodies (the rotor) turns, and the other is fixed. The viscosity is determined by the torque moment at a given angular velocity or by the angular velocity at a given torque moment. Rotary viscometers are used to measure the viscosity of lubricating oils (at temperatures up to -60° C), petroleum products, molten silicates and metals (up to 2000° C), highly viscous varnishes and cements, and clay mortars. The relative error of the most common rotary viscometers is between 3 and 5 percent. The construction of the RV-7 rotary viscometer, with limits of measurement from 1 to 105 N·sec/m2 and an error of ±3 percent, is shown in Figure 2.

Figure 2. RV-7 rotary viscometer (with preset torque): (1) internal rotating cylinder, (2) external fixed cylinder, (3) axis of the rotating system, (4) thermostat, (5) thermostat rod, (6) thermocouples, (7) block, (8) brake, (9) thread, (10) pulley, (11) weight that turns the pulley. (The speed of rotation of the block is determined from the speed of descent of the weight.)

The action of a viscometer with a sphere that moves in the medium under investigation is based on Stokes’ law; viscosity is determined according to the speed of passage of the falling ball between the marks on the tube of the viscometer. The widely used Hoeppler universal viscometer, with a “sliding” sphere (Figure 3), belongs to this type of instrument. The limits of measurement for viscometers of this type are 6 x 10-4 to 250 N-sec/m2, with an error of ± 1-3 percent.

Figure 3. Hoeppler viscometer with “sliding” sphere: (1) sphere, (2) tube with fluid, (3), (4), and (5) ring markings on tube, (6) thermo-static liquid bath, (7) thermometer, (8) pipe connection to join the instrument to the thermostat, (9) level.

The operation of ultrasonic viscometers is based on the measurements of the rate of decay of vibrations in a plate made of magnetostrictive material immersed in the medium under investigation. The vibrations arise from short (10-30 microsec) impulses of current in a coil wound onto the plate. When the plate vibrates, electromotive force is induced in the coil that decreases with a speed that is dependent on the viscosity of the medium. When the electromotive force decreases to a certain threshold value, a new excitational impulse enters the coil. The viscosity of the medium is deter-mined according to the frequency of the succession of impulses. Ultrasonic viscometers are used to measure viscosities in the range from 10-3 to 500 N·sec/m2, with a relative error of ± 5 percent.

In addition to viscometers that permit the expression of the results of measurements in units of dynamic or kinematic viscosity, there are also viscometers for measuring the viscosity of liquids in arbitrary units. This kind of viscometer consists of a vessel with a calibrated discharge tube; viscosity is evaluated according to the time of discharge for a certain volume of liquid. For example, by means of VZ-1 and VZ-4, viscometers, which are designed for research on varnishes and paints, viscosity is expressed in seconds, and with VU (Engler) viscometers, for petroleum products, it is ex-pressed in Engler degrees. The conversion of arbitrary units into units of viscosity of the International System of Units (N·sec/m2 and m2/sec) is possible but inaccurate.


Soveshchanie po viazkosti zhidkostei i kolloidnykh rastvorov: [Trudy], vols. 1-3. Edited by E. A. Chudakov and M. P. Volarovich. Moscow-Leningrad, 1941-45.
Volarovich, M. P. Viazkost’ smazochnykh masel pri nizkikh ternperaturakh, part 1. Moscow, 1944.
Belkin, I. M., G. V. Vinogradov, and A. I. Leonov. Rotatsionnye pribory. Moscow, 1968.


The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.


A device for determining viscosity; esp. used to measure the viscosity of slurries, including fresh concrete.
McGraw-Hill Dictionary of Architecture and Construction. Copyright © 2003 by McGraw-Hill Companies, Inc.
References in periodicals archive ?
Geographically, the global blood viscometer market is segmented into North America, Asia Pacific, Europe, Middle East & Africa and South America.
On the basis of product, the rheometers and viscometers market is segmented into rheometers (further segmented into dynamic rotational rheometers, torque rotational rheometers, capillary rheometers, oscillatory rheometers, high-throughput rheometers and other rheometers) and viscometers (further segmented into rotational viscometers, process viscometers, capillary viscometers and other viscometers).
Different viscometers measure viscosity at different shear rate ranges.
The analytical choice in most laboratories is the rotational viscometer, which measures the viscous drag on a rotating disk having a known spacing to the cylinder containing the sample being measured.
The rheometer data in Table 2 was obtained using a conventional cone and plate viscometer. Flow loop data was determined by measuring the proportional ratio of pressure drop of the fluid through a flow path, then applying the Hagen-Poiseuille formula.
Controlling black liquors with high solids content takes an on-line viscometer that can reliably measure the viscosity.
A Relative Viscometer Model Y501 has been introduced from Viscotek.
Toluene will be the first liquid reference material for viscometer calibrations both at atmospheric as well as at elevated pressure.
The viscometer links a laptop computer, an optical scanner, and a closed system of tubing containing the blood sample.
A viscometer that will work with difficult products is tough to find.
The Premier MV (Mooney viscometer) measures viscosity, scorch and stress relaxation of raw materials and mixed rubbers.