The field of physics that studies the interaction of electromagnetic radiation with electrically charged matter within the framework of relativity and quantum mechanics. It is the fundamental theory underlying all disciplines of science concerned with electromagnetism, such as atomic physics, chemistry, biology, the theory of bulk matter, and electromagnetic radiation.
Efforts to formulate quantum electrodynamics (QED) were initiated by P. A. M. Dirac, W. Heisenberg, and W. Pauli soon after quantum mechanics was established. The first step was to remedy the obvious shortcoming of quantum mechanics: that it applies only to the case where particle speeds are small compared with that of light, c. This led to Dirac's discovery of a relativistic wave equation, in which the wave function has four components and is multiplied by certain 4 × 4 matrices. His equation incorporates in a natural manner the observed electron-spin angular momentum, which implies that the electron is a tiny magnet. The strength of this magnet (magnetic moment) was predicted by Dirac and agreed with observation. A detailed prediction of the hydrogen spectrum was also in good agreement with experiment. See Atomic structure and spectra, Electron spin
In order to go beyond this initial success and calculate higher-order effects, however, the interaction of charge and electromagnetic field had to be treated dynamically. To begin with, a good theoretical framework had to be found for describing the wave-particle duality of light, that is, the experimentally well-established fact that light behaves like a particle (photon) in some cases but like a wave in others. Similarly, the electron manifests wave-particle duality, another observed fact. Once this problem was settled, the next question was how to deal with the interaction of charge and electromagnetic field. It is here that the theory ran into severe difficulties. Its predictions often diverged when attempts were made to calculate beyond lowest-order approximations. This inhibited the further development of the theory for nearly 20 years. Stimulated by spectroscopic experiments vastly refined by microwave technology developed during World War II, however, S. Tomonaga, R. P. Feynman, and J. Schwinger discovered that the difficulties disappear if all observable quantities are expressed in terms of the experimentally measured charge and mass of the electron. With the discovery of this procedure, called renormalization, quantum electrodynamics became a theory in which all higher-order corrections are finite and well defined. See Photon, Quantum mechanics, Relativistic quantum theory, Relativity, Wave mechanics
Quantum electrodynamics is the first physical theory ever developed that has no obvious intrinsic limitation and describes physical quantities from first principles. Nature accommodates forces other than the electromagnetic force, such as those responsible for radioactive disintegration of heavy nuclei (called the weak force) and the force that binds the nucleus together (called the strong force). A theory called the standard model has been developed which unifies the three forces and accounts for all experimental data from very low to extremely high energies. This does not mean, however, that quantum electrodynamics fails at high energies. It simply means that the real world has forces other than electromagnetism.
High-precision tests have provided excellent confirmation for the validity of the renormalization theory of quantum electrodynamics. In the high-energy regime, tests using electron-positron colliding-beam facilities at various high-energy physics laboratories have confirmed the predictions of quantum electrodynamics at center-of-mass energies up to 1.8 × 1011 electronvolts (180 GeV). The uncertainty principle implies that this is equivalent to saying that quantum electrodynamics is valid down to about 10-17 meter, a distance 100 times shorter than the radius of the proton.
High-precision tests of quantum electrodynamics have also been carried out at low energies by using various simple atomic systems. The most accurate is that of the measurement of the magnetic moment of the electron, or the gyromagnetic ratio g, the ratio of spin and rotation frequencies, which is correctly predicted by quantum electrodynamics to 12 significant figures. This is the most precise confirmation of any theory ever carried out. See Quantum field theory
the quantum theory of electromagnetic processes; the most thoroughly studied area of quantum field theory. Classical electrodynamics takes into account only the continuous properties of an electromagnetic field. However, quantum electrodynamics is based on the concept of an electromagnetic field that also has some discontinuous (discrete) properties. The carriers of such properties are field quanta, or photons. Photons have zero rest mass, energy ε = hv, and momentum p = (h/2π)k, where h is Planck’s constant, v is the frequency of the electromagnetic wave, and k is a wave vector of magnitude k = 2πv/c (c is the speed of light), oriented in the direction of propagation of the wave. In quantum electrodynamics the interaction of electromagnetic radiation with charged particles is viewed as absorption and emission of photons by the particles.
Quantum electrodynamics quantitatively explains the effects of the interaction of radiation with matter (emission, absorption, and dispersion) and furnishes a consistent description of electromagnetic interactions among charged particles. Some of the highly important problems not explained by classical electrodynamics but successfully solved by quantum electrodynamics are the thermal radiation of bodies, X-ray scattering on free (or, more accurately, weakly bound) electrons (the Compton effect), emission and absorption of photons by atoms and more complex systems, and emission of photons during the scattering of fast electrons in external fields (bremsstrahlung). Quantum electronics describes these phenomena, as well as any other phenomena concerning the interaction of electromagnetic radiation with electrons and positrons, with a high degree of accuracy. The theory is less successful in interpreting other processes, since these processes are decisively influenced not only by electromagnetic interactions but also by interactions of other types (strong and weak interactions).
The gradual construction of quantum electrodynamics has led to a reexamination of classical concepts dealing with the motion of matter.
V. I. GRIGOR’EV