An instrument for producing surface images with atomic-scale lateral resolution, in which a fine probe tip is scanned over the surface at a distance of 0.5–1 nanometer, and the resulting tunneling current, or the position of the tip required to maintain a constant tunneling current, is monitored.
Scanning tunneling microscopes have pointed electrodes that are scanned over the surface of a conducting specimen, with help from a piezoelectric crystal whose dimensions can be altered electronically. They normally generate images by holding the current between the tip of the electrode and the specimen at some constant (set-point) value by using a piezoelectric crystal to adjust the distance between the tip and the specimen surface, while the tip is piezoelectrically scanned in a raster pattern over the region of specimen surface being imaged. By holding the force, rather than the electric current, between tip and specimen at a set-point value, atomic force microscopes similarly allow the exploration of nonconducting specimens. In either case, when the height of the tip is plotted as a function of its lateral position over the specimen, an image that looks very much like the surface topography results.
It is becoming increasingly possible to record other signals (such as lateral force, capacitance, scan-related tip displacement, temperature, light intensity, or magnetic resonance) as the tip scans. For example, modern atomic force microscopes can map lateral force and conductivity along with height, while image pairs from scanning tunneling microscopes scanning to and fro can provide information about friction as well as topography.
Scanning tunneling microscopes make it possible not just to view atoms but to push them and even to rearrange them in unlikely combinations (sometimes whether or not these rearrangements are desirable). A few considerations of scale are important in understanding this process. Atoms comprise a positive nucleus and a surrounding cloud of negative electrons. These charges rearrange when another atom approaches, with unlike charges shifting to give rise to the van der Waals force of attraction between neutral atoms. This force makes gravity (and most accelerations) ignorable when contact between solid objects in the micrometer size range and smaller is involved, since surface-to-volume ratios are inversely proportional to object size.
The electric field in the scanning tunneling microscope allows plucking as well, in which adsorbed or substrate atoms are removed and transferred to the electrode tip with a suitable voltage pulse. Because the electric field from the tip falls off less rapidly with separation than do van der Waals forces, the most weakly attached nearby atom rather than the nearest may end up being removed. One solution to this problem is a hybrid approach. By invoking the tip electric field for bond breaking only when the tip is sufficiently close to the target atom that the van der Waals forces contribute as well, atoms on silicon could be singly removed and redeposited at will.
A third kind of selective bond breaking was also demonstrated. It involved the selective breaking of silicon-hydrogen bonds using electron energies (that is, pulse voltages) below those necessary to break bonds directly. Since the desorption probability was observed to vary exponentially with the tip-specimen current, it is believed that vibrational heating from inelastic electron tunneling mediated the chemical transition in this work. This work involves bond alteration at the level of signal atoms, the ultimate frontier for lithographic miniaturization.