Encyclopedia

Circulatory System

Also found in: Dictionary, Medical, Wikipedia.
(redirected from vascular system)

circulatory system

[′sər·kyə·lə‚tȯr·ē ‚sis·təm]
(anatomy)
The vessels and organs composing the lymphatic and cardiovascular systems.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Circulatory System

 

in man and animals, the system of blood vessels and cavities through which blood or hemolymph circulates. By the circulatory system, cells and tissues are supplied with nutrients and oxygen, and the products of metabolism are eliminated. For this reason it is sometimes called a transport or distributing system.

A distinction is made between two types of circulatory systems; the open (lacunary) system is peculiar to most invertebrates (arthropods and mollusks) and lower chordates (hemichordates and tunicates); the closed system is characteristic of some invertebrates (nemertines and segmented worms), all vertebrates, and man. In animals with an open circulatory system the blood vessels are interrupted by slitlike spaces (lacunae and sinuses) that do not have actual walls. The blood (in this case called hemolymph) comes in direct contact with all the body tissues. In animals with a closed circulatory system the blood flows through vessels, and substances are exchanged between the blood and various tissues through the walls of the vessels. The lymphatic system became separate from the closed circulatory system (from its venous part) of vertebrates in the course of evolution.

In man, vertebrates, and some invertebrates (arthropods and mollusks) the heart is the main organ of the circulatory system. The vessels that carry blood from the heart are called arteries, and the vessels that carry blood to the heart are called veins. In a closed circulatory system blood from the arteries flows into vessels of increasingly smaller caliber and finally into arterioles, from which the blood enters the capillaries. The capillaries combine to form a complex network from which the blood enters first small veins (venules) and then increasingly larger veins. The inner layer of the venous walls forms peculiar pocketlike valves that direct the flow of blood in one direction. The middle layer of the arterial walls contains an unusually large number of smooth muscular and elastic fibers, which enable the arteries to pulsate.

The structure of the circulatory system in nemertines is very simple. It consists of three longitudinal vessels—one dorsal and two lateral. Blood flows into the anterior and posterior parts of the body through the dorsal and lateral vessels respectively. Segmented worms have, in addition to the main longitudinal vessels (dorsal and ventral), transverse vessels that branch off to the intestine, parapodia, and excretory organs. The circulatory system is even more complicated in arthropods, brachiopods, and mollusks because they have a heart situated on the dorsal side of the body. In some arthropods, especially those with tracheal respiration, the open circulatory system is simplified because the respiratory function has largely shifted from the circulatory system to the tracheae. Mollusks exhibit all the transitions from an open circulatory system to an almost closed one (cephalopods). Among the invertebrates, only in the mollusks is the heart divided into a ventricle and atria. The blood, enriched with oxygen in the gills, enters the atria; thus, the blood contained in the heart is arterial. In echinoderms the weakly developed circulatory system is due to the system of lacunae and sinuses. Sea urchins and holothurians have well-developed blood vessels.

The structure of the circulatory system is most complex in vertebrate animals and man. Their heart has a powerful muscular wall. The blood flows in one or two circulations, depending on whether the vertebrate animal breathes through gills or lungs. With the gill type of respiration (in cyclostomes and fish except lungfish), there is a single circulatory system. The heart consists of two main parts—an atrium and a ventricle (bicameral); in addition there is a venous sinus and, in most fish, an arterial cone as well. The heart is filled with venous blood. From it emerges the abdominal aorta, through which the venous blood enters the afferent gill arteries. The blood is oxygenated in the gills, becomes arterial, and flows through the efferent gill arteries to the dorsal aorta, from which it is carried to all the organs of the body. Venous blood enters the heart through the anterior and posterior cardinal veins, which in cyclostomes empty directly into the venous sinus and in fish through the ducts of Cuvier.

With the lung type of respiration (in all terrestrial vertebrate animals and man as well as in lungfish), there are two circulatory systems, the greater and the lesser. In the greater circuit, arterial blood flows from the heart through the arteries to all the organs and tissues. Passing through the capillary network of the individual organs, the blood moves into the venous system and enters the heart through the large veins. In the lesser circuit, venous blood from the heart passes through the pulmonary arteries into the lungs. Passing through the capillary network of the lungs, the oxygenated (arterial) blood returns to the heart via the pulmonary veins. Because of the existence of a second (lesser) circulatory system, the structure of the heart of terrestrial vertebrates became complex; instead of being bicameral, it is tricameral (two atria and one ventricle) in amphibians and quadricameral (two atria and two ventricles) in certain reptiles (crocodiles), birds, mammals, and man.

In most reptiles the ventricle is separated by an incomplete septum; for this reason, their heart has a structure intermediate between that of the tricameral and quadricameral heart. In the quadricameral heart the arterial blood is completely separated from the venous blood, and as a result the tissues and organs are supplied only with arterial blood. In the tricameral heart arterial blood mixes with venous blood in the ventricle, and the organs are supplied with mixed blood. In all terrestrial vertebrate animals and man the blood vessels that branch off the abdominal aorta (which correspond to gill vessels in fish) change during embryonic development. Adult amphibians and reptiles have two aortic arches—right and left. Birds have only a right aortic arch, and mammals and man have only a left aortic arch. The venous system of all terrestrial vertebrates and man has a vena cava inferior, which performs the function of the posterior cardinal veins, and two (less commonly, one) venae cavae superiores, which are formed from the ducts of Cuvier. All vertebrates have a liver portal system. The kidney portal system is well developed in fish, amphibians, and reptiles. It is poorly developed in mammals and absent in man.

REFERENCES

Shmal’gauzen, I. I. Osnovy sravnitel’noi anatomii pozvonochnykh zhivotnykh, 4th ed. Moscow, 1947.
Beklemishev, V. N. Osnovy sravnitel’noi anatomii bespozvonochnykh, 3rd ed., vol. 2. Moscow, 1964.

A. N. DRUKHININ

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Mentioned in
References in periodicals archive
However, when an exposure becomes chronic, that initial protective response is likely to be harmful, [f the delicate vascular system suffers chronic insults repeatedly, that will trigger one or more of the finite responses in the form of oxidative stress, inflammation, or an autoimmune reaction in the vascular tissue.
Such vascular systems bring oxygen and nutrients to the tissue and carry away waste.
The next step is examining whether such tissue, implanted in the heart, would gain acceptance and be incorporated by the heart into the larger vascular system. Levenberg is optimistic.
Medullary bundle in relation to primary vascular system in Chenopodiaeeae and Amaranthaceae.
If air is leaking from a pneumatic system in an improper fashion (sometimes caused by wear or poor engineering), that air--under pressure--can be driven into the vascular system of the patient when areas of open bleeding are present.
``Both legs, his left arm and three fingers were amputated because his vascular system was so badly damaged.
The two antioxidant ingredients in PycnoQ10 have synergistic effects on the body and work to protect and enhance the whole vascular system including blood vessel integrity, blood lipid values, circulation, blood pressure and platelet function.
The current warning label states only that "safety and effectiveness of the device for use in the vascular system have not been established."
The red color is due to the presence of hemoglobin containing coelomocytes (RBCs) present in the water vascular system (Christensen 1999).
The growth of malignant disease and lower animal with special reference to the vascular system. Lancet 1907;2:1236-40.
This gives the membrane mimic stability under shear forces such as those imparted by blood flowing through the vascular system. The goal of this research is to determine the water distribution in the different layers of the biomaterial and to infer if the phospholipid layer exists as a single monolayer on top of the terpolymer.
Both Yohimbe and Yohimbine have an effect on the vascular system, which we'll discuss next.
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.