Γ(x), one of the most important special functions; generalizes the concept of the factorial. For all positive n it is given by Γ(n) = (n - 1)! = 1·2 … (n - 1). It was first introduced by L. Euler in 1729. For real values of x > 0 it is defined by the equality
![]()
Another notation is
Γ(x + 1) = π(x) = x!
The principal relations for the gamma function are
Γ(x + 1) = xΓ(x) (functional equation)
Γ(x)Γ(1 - x) = π/sin πx (complementary formula)
![]()
Special values are
![]()
For large x the Stirling formula holds:
![]()
A large number of definite integrals, infinite products, and summations of series are expressed by the gamma function. The function has also been extended to complex values of the independent variable.