The star whose explosion produced the Crab nebula is now a young optical pulsar (the Crab pulsar NP 0532), identified as such in 1967. Its pulsations are also observed at radio, infrared, X-ray, and gamma-ray wavelengths. These pulsations have a period of only 0.0331 seconds. The pulsar is the power house for the Crab nebula: energy is being lost by the pulsar in the form of highly energetic electrons, causing the pulsar to slow down very gradually; the electrons interact with the intense magnetic field extending into the nebula and radiate synchrotron emission. The energy loss of the pulsar equals the total energy radiated by the nebula (1030 to 1031 J s–1). The ultraviolet component of this radiation ionizes the gas in the filaments, causing the atoms to fluoresce. The Crab nebula is the defining member of the class of filled supernova remnants, or plerions.
a galactic nebula, the result of a supernova explosion in 1054 in Taurus. The distance to the nebula is 1,700 parsecs, and its radius is about 1 parsec. It is expanding at a speed of 1,000–1,500 km/sec. The nebula has the form of an elongated ellipsoid and a filamentary structure. The total mass of gas in the Crab Nebula is about 0.1 solar mass. About 80 percent of the nebula's luminosity (it has a visual stellar magnitude of 8.5) is concentrated not in the filaments but in the amorphous mass occupying the interior of the ellipsoid.
The Crab Nebula is a source of radio emission (Taurus A). In the interval between the radio and the optical regions of the spectrum there is a noticeable maximum in the radiation, the nature of which is not yet known. In the direction of shorter wavelengths, the spectrum extends to the X-ray region; only the central part of the nebula and the star itself radiate in this region. The radiation of the amorphous mass at all wavelengths is produced by fast (relativistic) electrons (with energies of 108–1012 eV) moving in a magnetic field (of intensity 10-3 oersted, or 8 X 10-2 A/m); this is what is known as synchrotron radiation. The generation of particles and of the magnetic field is associated with the remnant of the supernova, which is a pulsar with a radius of about 10 km, rotating with a period of 0.033 sec and producing bursts of optical, X-ray, and radio radiation. The star has a magnetic field of large intensity. The rapid rotation of this field produces electromagnetic effects, resulting in the acceleration of the particles and bursts of radiation. The field itself “twists” and then expands into the nebula. The pressure of the field and the particles accelerates the expansion of the nebula.
The study of the Crab Nebula, a unique celestial object, has made it possible to solve a number of problems of stellar evolution connected with the origin of pulsars.
S. B. PIKEL'NER